Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
2.
J Virol ; 95(22): e0090421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34468171

RESUMO

Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV's deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.


Assuntos
Fibras Musculares Esqueléticas/virologia , Infecção por Zika virus/virologia , Zika virus/fisiologia , Aedes , Animais , Animais Recém-Nascidos , Linhagem Celular , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Mioblastos , Replicação Viral
3.
J Steroid Biochem Mol Biol ; 190: 54-63, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30923014

RESUMO

Oral contraception is the most commonly used interventional method in the world. However, several women employ the continuous use of these hormones to avoid pre- and menstruation discomforts. Some studies indicate that oral contraceptives are associated with disturbances in glycemia and the effects of the use of a continuous regime are poorly elucidated. Herein, we evaluated the effects of the continuous administration of a combined oral contraceptive (COC) composed by ethinyl estradiol (EE) and drospirenone (DRSP) on glucose homeostasis in female mice. Adult Swiss mice received 0.6 µg EE and 60 µg DRSP (COC group) or vehicle [control (CTL)] daily by gavage for 35 days. COC treatment had no effect on body weight or adiposity, but increased uterus weight and induced hepatomegaly. Importantly, COC females displayed normal glycemia and glucose tolerance, but hyperinsulinemia and lower plasma C-peptide/insulin ratio, indicating reduced insulin clearance. Furthermore, COC mice displayed reduced protein content of the ß subunit of the insulin receptor (IRß) in the liver. Additionally, pancreatic islets isolated from COC mice secreted more insulin in response to increasing glucose concentrations. This effect was associated with the activity of steroid hormones, since INS-1E cells incubated with EE plus DRSP also secreted more insulin. Therefore, we provide the first evidence that the continuous administration of EE and DRSP lead to hyperinsulinemia, due to enhancement of insulin secretion and the reduction of insulin degradation, which possibly lead to the down-regulation of hepatic IRß. These findings suggest that the continuous administration of COC could cause insulin resistance with the prolongation of treatment.


Assuntos
Androstenos/efeitos adversos , Anticoncepcionais Orais Combinados/efeitos adversos , Etinilestradiol/efeitos adversos , Hiperinsulinismo/induzido quimicamente , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Animais , Feminino , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Camundongos
4.
Proc Natl Acad Sci U S A ; 107(6): 2652-7, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133798

RESUMO

Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals-pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Animais , Maleato de Dizocilpina/farmacologia , Eletroencefalografia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Plasticidade Neuronal , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...